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A comparison of rainfall-runoff modelling approaches for

estimating impacts of rural land management on flood

flows

Nataliya Bulygina, Neil McIntyre and Howard Wheater
ABSTRACT
There is a requirement for predictive tools to assist in land management and flood risk planning, and

a variety of tools have been proposed recently. We compare four tools developed under various UK

research programmes. The strengths and limitations of the tools are reviewed, model performances

on historic data are assessed, and the methods are applied to estimating flood flows of 5- and 10-

year return periods, and flow peaks under both recent land management conditions and speculative

scenarios (grazing intensification and tree planting), using the Pontbren catchment, UK as a case

study. Overall, the models agree on the direction of change, so that heavy grazing increases, and

afforestation and tree strips decrease the flood flows. However, the estimated effects vary

significantly between methods. It is concluded that method selection needs to carefully consider the

type and scale of land management scenario being examined, and the sources of data available to

support the modelling. Using an ensemble of suitable models is proposed as a useful way to

represent a multi-expert opinion and to characterise the structural error associated with a single

model.
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INTRODUCTION
Management of land and management of water are

strongly inter-dependent (e.g. DEFRA ), and integrated

catchment management requires capacity for exploring

hydrological impacts of land use and land management

scenarios. For example, the interactions between land use

and flooding, and land use and drought are of considerable

practical interest (O’Connell et al. ). Interpretation of

hydrological variability in terms of rural land management

impacts has been difficult: comparative catchment studies

are affected by differences in catchment and climate

characteristics (e.g. geology, soil, topography, rainfall)

(Kirby et al. ; Calder ; Robinson & Dupeyrat

) as well as data uncertainty (Beven et al. ).

Where catchment inter-comparison reveals land manage-

ment signals, this is not generally enough to predict

responses under future land management scenarios; for
that, a predictive hydrological model is needed (McIntyre

& Marshall ).

In hydrological modelling, representation of land man-

agement effects (for simplicity in this paper, ‘land

management’ is used to include both changes to land use

and the way a particular land use is managed) still remains

a fundamental challenge. This is because there are few or

no data on how the relevant changes affect either local-

scale physical properties (for example, soil-plant hydrology)

or catchment-scale response (O’Connell et al. ; Wheater

et al. ; Parrott et al. ), and because modelling

methods face fundamental challenges of methodology and

data-support. While, in principle, physics-based rainfall-

runoff models are able to represent small-scale processes

and upscale them to arbitrary scales, in practice such

models have limited capability for reliably estimating
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catchment-scale land management effects due to the lack of

knowledge about relevant local-scale hydrological proper-

ties and how they may change in response to land

management (Ballard et al. ; Ballard ), as well as

due to the difficulty of up-scaling (O’Connell et al. ).

Physics-based models are also expensive to build and

apply at catchment scales, often with no discernible return

in terms of accuracy of predictions (McIntyre & Al Qurashi

). The application of simpler ‘conceptual’ rainfall-runoff

models to predicting land management impacts generally

relies on speculative changes to catchment-scale parameters

(e.g. Packman et al. ; Rose & Rosolova ), or on

regionalised parameter estimates which are highly uncertain

(Bulygina et al. , ). Various regionalisation exercises

have identified relationships between land cover and

conceptual model parameters (Arnold et al. ; Yadav

et al. ; Merz & Bloschl ), including in some cases

the estimation of uncertainty in the regression (e.g. McIntyre

et al. ). By their nature, however, such regional models

only include information on those land management

changes that are most identifiable at catchment scales, for

example urbanisation, forest cover and presence of surface

reservoirs. A range of smaller-scale yet relevant land man-

agement options (e.g. Jackson et al. ; Ballard et al.

; Wilkinson et al. ) cannot be examined in this way.

Moreover, irrespective of the type of model, or the

method used to estimate model parameters, there is uncer-

tainty associated with assumptions in the model structure.

Due to model structural uncertainty and errors in both

physics-based and conceptual models, an individual deter-

ministic prediction of land management effects may not be

considered reliable, therefore ideally multiple perceptions

about a hydrological system would be inspected, in the

form of different perceptual models and/or parameterisa-

tions. This may be approached by using an ensemble of

significantly different models, reflecting different expert

opinions on the best way to conceptualise the system and

its changes. The ensemble of predictions may be treated in

two ways: (1) a model ‘averaged’ prediction is derived,

potentially including weights to reflect the relative believ-

ability of the models, for example, related to their previous

performances (Neuman ; Ye et al. ); and/or (2)

the prediction ensemble is explicitly reported without

weighting or averaging (IPCC ; Huisman et al. ).
The first approach, while being simpler to report and inter-

pret, requires the chosen models and their weights to be

adequately representative of the joint probability distri-

bution of models to give an accurate estimate of the

average. When such conditions are not met the ‘averaged’

prediction might perform less skillfully than the most skillful

model in the ensemble (Winter & Nychka ). The second

approach, recognising that any statistics such as the average

may be poor estimates, illustrates the full sample of results,

and allows propagation of model structural uncertainty

into the forecasts representing all available (perhaps,

diverse) interpretations of system behaviour.

In this paper we estimate land management effects on

flood flows using four alternative methods developed under

various British national flooding risk estimation

programmes: the Flood Risk Management Research

Consortium (FRMRC: Pender et al. ; Wheater et al.

), the Flood Risk from Extreme Events national research

programme (FREE: Bulygina et al. ), the Flood Manage-

ment Research and Development programme (FMRD:

Calver et al. ), and the Catchment Flood Management

Plan programme (CFMP: Hess et al. ). Each method

uses a different model and a different approach for estimation

of parameter values, as described in the next section. The

methods developed under the FRMRC and FREE pro-

grammes (hereafter called ‘Method 1’ and ‘Method 2’

respectively) are probabilistic to account for parameter uncer-

tainty, while the methods developed under FMRD and CFMP

(hereafter called ‘Method 3’ and ‘Method 4’ respectively) are

deterministic. None of the methods requires streamflow

measurements for the parameter estimation (although in

Method 1 any available runoff measurements may be inte-

grated), so that they may be applied to ungauged

catchments and land management scenario analysis. The

objective of this paper is to critically review these different

approaches to land management impacts analysis, including

assessing their underlying principles, their performance on

test gauged catchments, and reviewing the range of predic-

tions they produce when used for scenario analysis.

Subcatchments of the 12.5 km2 Pontbren catchment in

Wales, UK, are used as the test catchments. The paper is

organised as follows: the next section describes and lists

assumptions, limitations and strengths of the four chosen

modelling methods; the following section introduces the
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Pontbren catchment and land management scenarios; the

penultimate section provides results of the study and dis-

cusses the findings; and the final section concludes the study.
REVIEW OF FOUR MODELLING APPROACHES TO
LAND MANAGEMENT EFFECTS ESTIMATION

In this section, the assumptions, limitations and strengths of

the above-mentioned four methods of land management

effects estimation are described and discussed. The general

issues with the methods are covered here – additional

assumptions which are specific to the case study are covered

later in the paper.

Method 1: a meta-modelling approach

The procedure is based on using a detailed, physics-based

model to formalise local hydrological knowledge about pro-

cesses and hydrologically-relevant catchment properties

(Wheater et al. ; Ballard ). It is based on the hydro-

logical model up-scaling ideas of Ewen (), and on the

emulation of complex models by reduced order models

(e.g. Young & Ratto ). A catchment is divided into

hydrological response units that form a basis for a semi-

distributed model construction. Hydrological process under-

standing is developed for each unit type and implemented as

a high resolution physics-based model. The soil component

is based on Richards’ equation and can represent fine scale

soil vertical structure (at 1 cm resolution), and can include

effects such as soil compaction, feed-backs from tree-

planting on soil structure, and field drainage. The models

may be developed entirely from prior knowledge, or may

also be conditioned on available local and catchment scale

observations such as soil physical properties, soil moisture,

field scale overland, drain flow, interception and ground-

water measurements, and streamflow. This results in a

library of physics-based models, representing different

hydrological and land management conditions. The outputs

from these models are used to identify conceptual models

which, while being simple and computationally tractable

relative to the original model, nevertheless reproduce the

key flood responses. The unit-scale conceptual models are

assembled into a catchment semi-distributed model via a
channel routing function (Orellana et al. ; Wheater

et al. ). Parameter uncertainty is considered using

Monte Carlo methods. Method 1 is based on the following

assumptions and has the following limitations and strengths.

Main assumptions of Method 1

• The physics-based model has no significant structural

error so that all uncertainty can be represented as par-

ameter uncertainty.

• Responseunits canbe treatedashydrologicallydisconnected

units, shedding water directly to the channel network.

• The chosen conceptual model is capable of adequately

capturing the physics-based model response (an ensem-

ble of conceptual models could be used, but this has

not yet been applied).

Main limitations of Method 1

• The computational expense limits the size and number of

the response units considered, and the number of Monte

Carlo samples used to represent uncertainty.

• If the physics-based model uncertainty is to be fully con-

strained, it is expected that a significant amount of data

will be needed (for example, soil moisture, drain and over-

land flows, physical characteristics and their change). The

capability of this approach when relying entirely on prior

knowledge is a topic of ongoing research.

Main strengths of Method 1

• Prediction uncertainty is estimated.

• A physics-based model allows physical changes to the soil

and vegetation properties to be translated directly to

changes in model parameters, rather than relying on

speculative changes or regionalised values.

• The method can be applied to any land management

change. This includes the ability to represent the effect

of spatial positioning of small-scale land management fea-

tures (e.g. tree strips or localised surface water storage

features).

• The meta-model is conditioned on local-scale infor-

mation (via being fitted to the physics-based model
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outputs), and potentially also on response unit and

catchment-scale information (via conditioning of the

meta-model on any available flow observations).

Method 2: a Bayesian approach using regionalised

indices

This procedure conditions a hydrological model using

regionalised values of flow indices to summarise expected

hydrological system behaviour depending on catchment

geology, soils, and land management. For example, Buly-

gina et al. () used the Base Flow Index (BFI)

estimated by the UK HOST (Hydrology of Soil Types)

soil classification system (Boorman et al. ) and Curve

Number (CN) estimated using the USDA’s Soil Conserva-

tion Service soil and land management classification

system (USDA ). The indices are used to condition par-

ameters of a conceptual hydrological model using Bayes’

equations, giving posterior parameter distributions for a

given land management scenario. This is described fully

by Bulygina et al. (, ), and may be summarised as

follows. The posterior likelihood of a sampled parameter

set is proportional to the consistency of the simulated

hydrological response (as measured using the selected indi-

ces) with the response indices predicted for the same

catchment by regionalisation. The consistency is measured

on a scale defined by the probability distribution of the

index – for example, an index with large variance would

produce only a small difference in posterior likelihood

between parameter sets and thus higher parameter uncer-

tainty. If more than one index is used, then their joint

probability distribution is used to define the parameter set

likelihood. A large sample of parameter sets and associated

likelihoods are used to define the posterior distribution.

The posterior distribution of parameter values is propa-

gated to uncertainty in the predictions. The approach is

based on the following assumptions, and has the following

limitations and strengths.

Main assumptions of Method 2

• Change in hydrological response due to the relevant land

management changes can be captured by the chosen

regionalised indices. In particular, it may be questioned
whether the catchments and data sets used to produce

the regional relationships are consistent with the catch-

ment and scenarios being assessed. For example,

Bulygina et al. () address the question of how relevant

the CN system is to UK soil types.

• The response can be captured by the chosen rainfall-

runoff model structure.

Main limitations of this Bayesian approach

• Small-scale land management changes are difficult to

evaluate, because regionalised indices are typically

derived from catchment-scale data.

• Regionalised data on land management effects are not

available for the UK; validity of (transformed) relation-

ships from the USA is an implicit assumption.

• Estimates of the joint probability distribution of the regiona-

lised indices are required (which in the case of a

multivariate normal distribution would be described by

the expected values and a covariance matrix); because

this information is seldom given in available databases,

this may require some judgement on behalf of the modeller.

Main strengths of this Bayesian approach

• Relative to a physics-based approach, the parameter esti-

mation is straightforward and computationally efficient,

because of the explicitly defined likelihood function and

relative simplicity of the model.

• Prediction uncertainty is estimated.

• The method has the capability to represent a large variety

of land management scenarios, for example different agri-

cultural land uses and management practices, different

types of forest and urbanisation.

Method 3: the CFMP land management tool

Method 3 estimates change in catchment scale daily maxi-

mum runoff depth for different return periods depending

on climate, soil type, and land management type (Hess

et al. ). The method was primarily devised as a screening

tool to select policy units that were most sensitive to land
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management change. In development of the tool, a continu-

ous-time, daily water balance model, WaSim (Hess &

Counsell ), was used to estimate antecedent conditions

for the period 1961–2006 for different ‘policy units’ (a com-

bination of agroclimatic zone, soil type, land cover and land

management type) with parameters defined by relevant soil

physical properties and land cover/management types (Hess

& Counsell ). WaSim divides the unsaturated zone into

three compartments, the upper 0.15 m layer, the active root

zone and layer below the root zone. Soil water moves from

one layer to the layer below only when its water content

exceeds field capacity. The rate of drainage is a function of

the relative saturation of the layer and the hydraulic proper-

ties of the soil. Water draining out of the lower layer is taken

to be potential recharge. The infiltrated water is assumed to

be irrelevant for flood flow. Surface runoff is comprised of

two components; runoff due to intense rainfall (infiltration

excess) and runoff due to saturated soil. Infiltration excess

is estimated using the CN method, and, additionally, any

rain falling on saturated soil is assumed to run off. Any pre-

cipitation that does not run off is assumed to infiltrate.

WaSim is spatially lumped in that it does not explicitly con-

sider spatial variability of inputs or outputs, however it

accounts for soil and land use heterogeneity by running

lumped models in parallel and simple weighted averaging

of the output runoff. WaSim has been used to simulate 46

years of daily runoff depth for each of 46,600 combinations

of the following: soil types (28 in total, based on the HOST

classes), land cover types (5), field condition classes (5) and

agroclimatic zones (68) (Smith ). The combinations that

are not considered plausible are omitted. Then the (log-

normal) frequency distribution of annual maxima daily

flows is derived for each combination. Hence the change

in runoff associated with moving from one policy unit to

another can be estimated. The CFMP tool reports this

change for the 5-, 10-, 50-, 75- and 100-year return periods,

but does not report the long-term hydrographs. There is an

option to enter an event hydrograph of a known return

period for a baseline land management, recommended to

be based on the Revitalised Flood Estimation Handbook

methodology (Kjeldsen ), so that the CFMP tool can

estimate the change in peak flow associated with a land

management scenario by scaling the peak according to the

change in daily runoff depth. The approach is based on
the following assumptions and has the following limitations

and strengths.

Main assumptions of Method 3

• The combination of climate, land management and soil

type under investigation can be adequately captured by

the 68 agroclimatic areas of Smith ().

• The physically-based soil hydrology parameters in the

WaSim model can be adequately characterised by the

most extensive soil series within the HOST soil class.

• Land management types are uniformly distributed across

compatible HOST soil types within a policy unit (this

assumption is required to facilitate the spatially lumped

model). WaSim can be parameterised using physical

properties representative for each HOST type soils

thereby not requiring parameter calibration.

• As for Method 2 above, the CN system, originating from

data from the mid-west USA, can adequately represent

conditions in England and Wales (see Bulygina et al. ).

• Catchment hydrological response can be captured by the

lumpedWaSimmodel, and the impacts of the spatial distri-

bution for responses within the catchment, are negligible.

Main limitations of the CFMP tool

• Continuous hydrological predictions are not available,

thereby not allowing land management effects estimation

on different hydrograph aspects (i.e. time to peak, peak

flow rate).

• The results given are for T-year daily maxima, rather than

sub-daily maxima.

• Uncertainty in predictions is not quantified.

Main strengths of the CFMP tool

• Computational efficiency and ease of use (implemented

as a MS Excel spreadsheet).

• A reasonably large number of scenarios (improved grass-

land, cereals, horticulture/non-cereal, semi-natural

vegetation, and woodland; covering a range of return

periods) can be explored for any catchment in England

and Wales.
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Method 4: the FRMD approach using regionalised

parameters

The regionalisation method developed by Calver et al.

() estimates parameters of the continuous, spatially

lumped, hourly Probability Distributed Model (PDM)

(Moore ). Rainfall inputs to the soil store are first

multiplied by a rainfall correction factor (a model par-

ameter). The soil store can be depleted through

evapotranspiration at a rate proportional to the moisture

content of the store. Although the general structure of the

model is a distribution of soil storage capacities, the

shape parameter of the distribution is fixed to zero so

that it is a simple bucket model, which generates effective

rainfall only when the bucket overflows. Generated

runoff is split between two routing stores: (linear) fast

flow store and (cubic) slow flow store. Using multiple

regression, the model parameters are related to catch-

ment properties such as catchment altitude, slope,

drainage density and length, soil type distribution, pres-

ence of lakes and reservoirs, and proportion of urban

areas and grassland (Calver et al. ). An exception is

the percentage of effective rainfall that goes to the fast

store, which is fixed to the standard percentage runoff

(SPR) derived from the HOST classification (Boorman

et al. ). In principle, the parameter covariance

might be used to estimate prediction uncertainty associ-

ated with the regression (e.g. McIntyre et al. ),

however this information was not available, and so we

apply the model deterministically using only the best-esti-

mate parameters. To allow the impacts of intensification

of land use to be analysed, Packman et al. () used

expert judgement to modify the BFI and SPR of soils to

represent degradation of the soil conditions. The corre-

sponding SPR and BFI values from the HOST database

are used to estimate the PDM parameters. The approach

is based on the following assumptions and has the follow-

ing limitations and strengths.

Main assumptions of Method 4

• The 39 catchments used to develop the regression

equations provide sufficient information about the varia-

bility of responses.
• The lack of consideration of parameter inter-dependence

in the multiple linear regressions does not prevent useful

parameter sets being estimated.

• Hourly catchment response can be captured, and land

management effects estimated using the four-parameter

lumped model.

Main weaknesses of the regression-based regionalisation

• Uncertainty in predictions is not quantified (parameter

error covariance is not estimated).

• Only two types of land management are directly rep-

resented by inputs to the regression equations:

grassland, and urban area. To account for an additional

land management type – heavy grazing – speculative

changes to BFI and SPR are made.

Regression-based regionalisation strengths

• Computationally inexpensive.

• The simple model and published regression equations

allow the method to be implemented easily without

necessarily having access to the original tool.
APPLICATION OF THE MODELLING APPROACHES:
THE PONTBREN CASE STUDY

The four methods are applied to the Pontbren catchment to

test performance in replicating observed flows, and to evalu-

ate effects of different land management change scenarios,

in terms of changes in flood frequency distributions, and

peak flows.
The Pontbren catchment description

The models are applied to five gauged subcatchments of the

Pontbren catchment in Powys, Wales, UK (Marshall et al.

), the largest of which has an area of 5.8 km2.

Elevations in the catchment range from 170 to 438 m,

and slopes are typically steep, on average 6
W

. The land at

Pontbren is almost exclusively grazed grassland, which
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occupies approximately 88% of the land. Woodland

occupies 7% of the land area, and the remaining 5% is

crops, roofs, paved areas, private gardens and open

water. The annual precipitation measured at Pontbren

from 1 April 2007 to 31 March 2008 is between 1,200

and 1,450 mm depending on the gauge location, and poten-

tial evapotranspiration, estimated by the MORECS (Met

Office Rainfall and Evaporation Calculation System)

model (Hough & Jones ) for grassland is 450 mm, so

that the ratio of rainfall to potential evapotranspiration is

between 2.7 and 3.2. Soil types are dominated by low per-

meability silty clay loams (Table 1). Typically 20 cm

depth of top-soil overlies a deep layer of relatively

impermeable subsoil. On the upper part of the catchment,

the topsoil has significant peat content.

The Pontbren catchment was maintained as an

experimental catchment over the period 2004–2009, to

investigate the effects of land management on flood

runoff. It is used for this inter-comparison because

high resolution rainfall-runoff data are available, and

because the hydrological response and its links with

land management in the catchment are relatively well-

understood ( Jackson et al. ; McIntyre & Marshall

, ; Wheater et al. ; Bulygina et al. ;

Marshall et al. ; Ballard ; McIntyre et al. )

and hence it provides a good basis for assessing applica-

bility of different models. Also, Method 1 requires the

physics-based models already set up for this catchment
Table 1 | Dominant soil series and types of the Pontbren catchment

Soil series Broad texture group Soil water regime

Hiraethog Thin peat over loamy
over lithoskeletal

Seasonally waterlogged, tops
autumn, winter and spring

Manod,
Denbigh

Fine loamy over
lithoskeletal

Well drained, moderately pe
wet

Sannan Fine silty Slight seasonal waterlogging
permeable

Cegin Fine silty Slowly permeable, seasonally

Wilcocks Peaty surface layer over
loamy

Seasonally waterlogged, tops
autumn, winter and spring
of year

Crowdy,
Winter Hill

Deep peat Permanently waterlogged
( Jackson et al. ). Finally, the land management at

Pontbren is representative of upland land management

over most of Wales and over much of the UK (Marshall

et al. ).

Data used for this study are 10-minute resolution rainfall

from the rain gauge at site 3 (Figure 1), which has the longest

record, daily MORECS evapotranspiration rates, and 15-

minute resolution streamflow data from five bed-mounted

acoustic Doppler velocity meters (gauges 2, 5, 6, 7, and 9

in Figure 1) (McIntyre & Marshall ). The contributing

areas at each of the five gauges are given in Table 2 along

with other catchment properties derived from the

LCM2000 land use maps and NSRI (National Soil

Resources Institute) soil data base. Although another five

flow gauges exist (Figure 1), their data are considered less

accurate (McIntyre & Marshall ) and so are neglected

here.

Twenty years (January 1989–December 2008) of climate

data from Cefn Coch (approximately 3 km from Pontbren)

are used to drive the models and estimate flood frequency

distributions, which are used to assess the differences in

flood frequency estimates between the four methods. The

data from Cefn Coch are used because long-term climate

data from within the Pontbren catchment are not available.

The data from Cefn Coch consist of hourly rainfall from a

tipping bucket gauge and daily evapotranspiration data cal-

culated from climate data using the MORECS model

(Hough & Jones ).
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Soil parent material
HOST
class

Area
fraction

oils wet for most of Mudstone and
sandstone

15 0.12

rmeable, subsoils rarely Mudstones and
sandstones

17 0.13

, subsoils slowly Glacial till with
siliceous stones

18 0.04

wet Glacial till with
siliceous stones

24 0.34

oils wet for most of
, subsoils wet for most

Glacial till with
siliceous stones

26 0.28

Humified peat 29 0.07



Figure 1 | Pontbren instrumentation locations: ▴n Stream and drain flow monitoring site;

▾ Rain gauge, black areas next to gauge 8, north of gauge 8 and next to gauge

3 are lakes.
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Performance assessment under existing land

management

Assessing the suitability of the methods (summarised in

Table 3) for predicting impacts of changed land manage-

ment begins with assessment under unchanged conditions,

and the ability of the models to replicate the range of

observed flow responses observed at the five Pontbren

gauges from the 45-month period April 2005–December

2008. This test is restricted to the meta-modelling, regionali-

sation, and regression-based parameterisation approaches:

the CFMP method is not tested in this way because it evalu-

ates changes in daily flows for different return periods, and it

does not report time series of flow.

Four measures of performance are considered:

1. Nash–Sutcliffe efficiency (NS).

2. Nash–Sutcliffe efficiency for log-transformed flows

(NSlog).
Table 2 | Properties of the five gauged subcatchments

Gauge no. Catchment area, km2 Improved grassland, % Unimproved gras

2 1.29 68.0 28.8

5 2.39 70.4 21.6

6 3.17 77.0 16.6

7 5.77 79.5 15.8

9 4.06 13.2 83.1
3. Relative percentage bias in total runoff volume (Bias).

4. Prediction bound width for probabilistic models

(Pwidth).

The Bias measure concerns the total runoff amount, and

characterises the partitioning between total evapotranspira-

tion, runoff and storage. The NS applied to untransformed

flows quantifies the match between the observed and pre-

dicted flow time variability at the appropriate model

resolution time scale. The NS puts higher emphasis on fit-

ting high flows due to the use of squared residuals in the

calculation, whereas applied to log-transformed flows the

NS tends to match low flow performance due to the log

functional properties. The prediction bound width describes

the precision of probabilistic model predictions, comple-

menting the NS efficiencies that characterise prediction

accuracy. Since the first two methods are probabilistic,

using 30 samples to account for model parameter uncer-

tainty, the NS, NSlog, and Bias measures are also

probabilistic, having values determined for each individual

model parameter sample. For the probabilistic methods,

therefore, expected values and standard deviations of the

probabilistic NS, NSlog and Bias (as well as Pwidth)

measures are reported for comparison with the determinis-

tic values derived using the deterministic methods.
Land management scenarios

Four different scenarios were considered: (1) current land

management, (2) heavy grazing over the whole catchment

area, (3) complete afforestation with deciduous trees, and

(4) deciduous tree strips on fields under improved grassland.

The tree strips are assumed to occupy 12% of field area,

which is typical within Pontbren (Jackson et al. ).

Method 1 is capable of explicit positioning of the strip at
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sland, % Open water, % Woodland, % Average slope,0 BFIHOST

0.01 3.2 5.0 0.26

0.34 7.7 4.7 0.27

0.26 6.1 5.0 0.28

0.14 4.5 5.3 0.30

2.6 1.1 7.0 0.34



Table 3 | Summary of models used to represent the Pontbren hydrological response

Method Soil moisture model summary
Routing model
summary

No. of parameters to
estimate

Spatial unit
scale

Time
step Reference

Method 1:
Meta-modelling

Physics-based model
(Richards’ equation) at
field scale, upscaled to a
conceptual model

Two parallel
routing stores,
plus one-
parameter
channel model

6 × number of land
management types

Field size 15 min Wheater et al.
()

Method 2:
Indices-based
regionalisation

PDM model Two parallel
routing stores,
plus one-
parameter
channel model

5 × number of soil
(HOST) – land
management
combinations

100 × 100 m 15 min Bulygina et al.
()

Method 3: CFMP
tool

WaSim model (1D
conceptual model
parameterised using
physical properties)

No routing 20 × number of soil
(HOST)– land
management
combinations

Lumped
with
spatial
weighting

1 day Hess et al.
(); Hess
& Counsell
()

Method 4:
Regression-based
regionalisation

Bucket model (PDM with
shape parameter¼ 0)

Two parallel
routing stores

4 Lumped 1 hour Calver et al.
()
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the bottom of each field; while Methods 2 and 3, due to their

limitations, treat the strips as an afforested area fraction.

Method 4 is designed to represent three types of land man-

agement only: grassland, urban, and heavy grazing, and

therefore it was not used for scenarios 3 and 4. Results are

presented as relative changes from those under the existing

land management.

Following performance assessment, the effects on T-year

floods are assessed. Using the 20-year series of rainfall from

Cefn Coch, a time-series of runoff was generated by Methods

1, 2 and 4. For the four land management scenarios listed

above, a log-normal distribution was fitted to each simulated

annual daily maxima series. In each case, the log-normal

hypothesis was accepted on the 95% confidence level

using the Kolmogorov–Smirnov test. The 5- and 10-year

return period flood peaks were estimated using the fitted dis-

tribution (longer return periods were not assessed because

only 20 years of data were available). Method 3 reports rela-

tive changes in daily T-year floods (Hess et al. ); hence

results from all four methods could be compared.

To further evaluate land management impacts on peak

flows, the largest simulated flow event (20 December

1991) was modelled under the four scenarios, using all

methods but Method 3 (as it does not report time-series

results). The effects were estimated at all five gauges, but
results are presented below only for gauges 6 and 9 because

these two gauges have the most significantly different soil/

land management properties (see Table 2). Method 1 is

demonstrated for gauge 6 only, because the physics-based

models which underlie this approach were not developed

for the soil types contributing to gauge 9 (Wheater et al.

).
RESULTS AND DISCUSSION

Performance assessment on observed flows

Performances of the three time-series modelling approaches

(Methods 1, 2 and 4) were assessed using the flow records

from April 2005 to December 2008. The performance

metrics are shown in Table 4, where the best performance

measures are highlighted in grey. Methods 1 and 2 give

the highest NS values (when mean values are compared).

Method 2 gives the highest NSlog values (except for gauge

7), while Method 1 gives the lowest NSlog values. Also,

Method 2 has the lowest absolute Bias value (except gauge

7), while Method 4 has the highest Bias (i.e. over-prediction

of runoff volume). Model predictions for one of the largest

observed runoff events observed at Pontbren (18 January
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Table 4 | Nash–Sutcliffe efficiencies (NS), biases, and average 95% prediction widths for considered approachesa

Gauge 2 5 6 7 9

Method 1: Meta-modelling approach

NS 0.46 (0.08) 0.77 (0.01)c 0.84 (0.01)c 0.81 (0.01)c –b

NSlog �6.50 (4.3) �28.40 (22.7) �28.10 (20.1) �2.80 (3.1) –

Bias, % 39.8 (0.9)d 4.6 (0.7)d �17.7 (0.6)d �25.4 (0.6)c –

Pwidth, m3/s 0.01 (0.03)c 0.02 (0.04)c 0.02 (0.04)c 0.03 (0.05)c –

Method 2: Indices-based regionalisation approach

NS 0.80 (0.03)c 0.76 (0.03)d 0.79 (0.03)d 0.77 (0.03)d 0.84 (0.01)c

NSlog 0.60 (0.03)c 0.70 (0.02)c 0.72 (0.02)c 0.16 (0.05)d 0.70 (0.02)c

Bias, % 15.2 (1.3)c 1 (1.4)c �8.7 (1.7)c 27.3 (2.6)d �13.2 (1)c

Pwidth, m3/s 0.02 (0.03) 0.03 (0.04) 0.05 (0.07) 0.08 (0.12) 0.03 (0.04)

Method 4: Regression-based approach

NS 0.63 0.71 0.78 0.32 0.64

NSlog 0.52d 0.59d 0.68d 0.35c 0.64d

Bias, % 49.2 35.5 26.7 76.6 16.8

aExpected values and standard deviations (in parentheses) of NS, NSlog, and Bias are given for the probabilistic approaches.
bThe meta-modelling was not developed for the area contributing to gauge 9.
cBest measures.
dSecond-best measures.
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2007) are shown in Figure 2. Methods 1 and 4 tend to over-

predict the peak flow. Method 2 provides much wider pre-

diction bounds than the meta-modelling approach (see

also average prediction bound width for Methods 1 and 2

in Table 4). Method 3 is not assessed here, since it only pro-

vides relative changes for T-year floods. Interestingly, the

performance of Methods 2 and 4 drops significantly for

gauge 7 (according to NSlog and Bias measures), even

though the area draining into gauge 7 is similar to the area

draining to gauge 6 (Table 2). This might be because the

bed-mounted acoustic Doppler velocity meter used as

gauge 7 was less reliable, especially for low flows, than

that used as gauge 6 (McIntyre & Marshall ). Based

on Table 2, Method 1 provides the highest NS values (clo-

sely followed by Method 2), and Method 2 provides better

performance measures than the other two methods for low

flows and water balance.

Based on the NS and Bias measures, Methods 1 and 2,

the meta-modelling and indices-based methods, generally

performed better than Method 4, the regression-based

method. However, the latter was developed for larger catch-

ments (area greater than 10 km2), and with a broader set of
applications in mind, including urban and lowland catch-

ments, whereas the former two were developed specifically

to look at upland rural land management. The performance

differences may also arise from some of the theoretical limit-

ations of using multiple regression to estimate model

parameters for ungauged catchments: the regression

approach of Method 4 estimates the rainfall-runoff model

parameters independently of each other (see McIntyre

et al. ), whereas the other two methods maintain the

dependencies by using sampled parameter sets. Method 1

usually produces the best NS values, which is likely to be

because its underlying physics-based models were trained

primarily to fit high flows (Wheater et al. ). Method 2

gives close to the best performance values for all gauges,

but gives quite large prediction bound widths, Pwidth, rela-

tive to Method 1 (Table 4), therefore its applicability might

be questionable on the basis of low precision. Also, the

applicability of Method 2 is limited by its reliance on prior

estimates of the flow indices, which would typically come

from national databases (in the case study, BFI and CN);

whereas Method 1 allows locally specific land management

features and practices, such as locations of tree strips and
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Figure 2 | Prediction comparison given by Methods 1, 2 and 4 for an event on 18 January 2007. Prediction is given either as a line (regression-based regionalisation), or as minimum-

maximum prediction bounds (metamodelling and indices-based regionalisation).
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surface storage features, to be explicitly included, albeit at

greater computational expense and with the requirement

for knowledge of local scale processes (Ballard ; Buly-

gina et al. ). Method 2, as applied here, also relies on

the CN data, derived in the mid-western USA, with doubts

about its applicability to UK soils and land management.

Although it was also found to perform well on the Plynlimon

catchments by Bulygina et al. (), clearly, more extensive

validation tests are required before recommending wide-

spread use of this index. This latter limitation – the

assumption about the applicability of the CN data – also

applies to Method 3, the time-series performance of which

could not be tested as it reports only the T-year daily flood

peaks.

Variability of predictions between the methods

To evaluate the variability of the methods in terms of their

predictions of land management effects on flood peaks,

changes to the 5- and 10-year return period floods were mod-

elled, as well as changes to the largest simulated peak flow.

For the probabilistic methods, the median out of all the
samples is used for summarising results. The results gener-

ally show that heavy grazing increases flow magnitudes,

while afforestation and tree strips decrease flow magnitudes

(Table 5). For example, at gauge 6:

• Method 3 predicts the highest increase in peak daily flow

under heavy grazing (28–34%, depending on return

period), and Method 4 gives the lowest increase (3.9–

4.1%);

• Method 1 predicts the highest decrease in maximum daily

flow under afforestation (17.4–17.9%), and under tree

strips (6.2–6.5%); and

• Method 2 provides estimates between those of Methods 1

and 3.

The estimated effects vary significantly between the

methods. For example, if the area becomes heavily grazed,

the 5-year return period maximum daily flow at gauge 6 is

predicted to increase by between 4 and 34% depending on

the method used; and is predicted to decrease by between

11 and 18% if the area becomes fully afforested with decid-

uous trees; and decrease between 1.5 and 6% if tree strips

are introduced in the fields under improved grassland.
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Table 5 | Median and 95% confidence intervals (shown in parentheses) for changes in maximum daily flows (%) at gauges 6 and 9, and in the largest simulated peak flow (December 1991)

at gauge 6 under different land management change scenarios

Gauge 6 Gauge 9

Return period 5 years 10 years 5 years 10 years Largest peak flow (gauge 6)

Peak flowa 27.7 mm/day 30.8 mm/day 23.4 mm/day 26 mm/day 0.5 mm/15 min

Heavy grazing

Method 1: Meta-modelling 11.4 (�1; 21) 12.8 (0; 19) –b 44.2 (35; 49)

Method 2: Indices-based
regionalisation

10.3 (2; 21) 11 (2; 22) 13.5 (2; 22) 13.1 (1; 22) 17.8 (4; 36)

Method 3: CFMP tool 33.8 28.4 50.5 42 –d

Method 4: Regression-based
regionalisation

4.1 3.9 4 3.8 4.2

Afforestation

Method 1: Meta-modelling �17.4 (�35; �5) �17.9 (�34; �5) –b �48.4 (�64; �33)

Method 2: Indices-based
regionalisation

�11.5 (�26; �3) �11.7 (�27; �4) �9.3 (�22; �3) �10.1 (�22; �4) �15.8 (�33; �2)

Method 3: CFMP tool �18.1 �11.7 �14.5 �8.7 –d

Method 4: Regression-based
regionalisation

–c

Tree strips on improved grassland

Method 1: Meta-modelling �6.2 (�8; 2.4) �6.5 (�8.4; �2.8) –b �7.8 (�17; �5)

Method 2: Indices-based
regionalisation

�1.5 (�3; –0.2) �1.5 (�3; �0.3) �0.3 (�0.9; 0.1) �0.4 (�0.9; 0) �1.1 (�2.4; �0.2)

Method 3: CFMP tool �2 �1.3 �1.1 �0.8 –d

Method 4: Regression-based
regionalisation

–c

aEstimated using Method 2 (median values).
bMethod 1 was not developed for area contributing to gauge 9 (Wheater et al. 2008).
cMethod 4 is insensitive to afforestation and tree strips (Calver et al. 2005).
dMethod 3 does not provide continuous time predictions (Hess et al. 2010).
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Furthermore, change estimates vary significantly across the

samples taken within each probabilistic model run. All the

results in Table 5 illustrate that the relative effects of

change also depend on existing land management and soil

distributions. Areas which are heavily grazed (i.e. the exist-

ing catchment under gauge 6) yield higher relative effects

when afforestation and tree strips are implemented, while

areas with relatively low grazing intensity (as under gauge

9) yield lower relative effects.

Methods 1, 2 and 4 predict that the relative effects tend

to be similar for the 5- and 10-year return periods, whereas

Method 3 predicts a significant decrease in effects for the

more extreme flood. This may be because the land manage-

ment change principally affects the linear routing part of
the models in Methods 1, 2 and 4: the split between storm-

flow and baseflow, and the residence times, rather than the

soil moisture accounting model parameters. For example,

this is clear in the sensitivity analysis done by Bulygina

et al. (). In contrast, in Method 3, the impact of land

management change is assumed to affect only the non-

linear soil moisture model. In general, it has been difficult

to identify relations between non-linear model parameters

and land management (e.g. McIntyre & Marshall ),

and hence the more evidence-based methods, Methods 1,

2 and 4, are expected to be more linear in their effects.

For Methods 1 and 2, the small increase in effect going

from T¼ 5 to T¼ 10 years is not significant: it can be

explained by the probabilistic nature of the two
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approaches, and the sampling error in the reported median

value.

Land management effects on peak flow were evaluated

for the largest simulated event in the 1989–2008 period

using all but Method 3. This differs from the previous analy-

sis of T-year floods in that it assesses largest flow at the 15

minute (or, hourly for Method 4) time resolution rather

than daily (Figure 3). Scenario prediction bounds (maximum

and minimum flows from the 30 samples) overlap each

other for Method 2, signifying high uncertainty, which

arises from the limited information in the two indices (BFI

and CN) used. The bounds do not overlap for Method 1 sig-

nifying much lower uncertainty, and this method also has

generally better accuracy for peak flows (Table 4). However,

the application of Method 1 in this case has used local

measurements to constrain the physics-based and catchment

models (Wheater et al. ), and its accuracy and precision

would be expected to decrease without the benefit of these

local measurements. The Method 1 predictions are the

most sensitive to the considered land management changes

(Figure 3 and Table 5), suggesting that the other methods

may be underestimating effects. As with the return period

analysis, the predicted effects vary significantly between

the methods: they range from a 4 to 44% increase in peak

flow for the heavy grazing scenario, 16 to 48% decrease in

peak flow for the afforestation scenario, and 1 to 8%

decrease in peak flow under the tree strip scenario. Both
Figure 3 | Streamflow at gauge 6 for the largest simulated event (December 1991) as estimat
Method 1 and Method 2 estimate relative effects of land

management on peak flow to be much larger than the effects

on a 10-year return period maximum daily flow; while

Method 4 evaluates the effects to be similar (Table 5). This

may be linked to the differences in the spatial natures of

the models, with the latter (lumped) model losing some of

the locally intense runoff associated with the change. This

may also explain why the latter method performs less well

on high flows in general (Table 4).

The large difference in results between methods poten-

tially presents a challenge for decision-makers, and to

decide which method, if any, to trust, it is essential to under-

stand the reasons for their differences. There are various

potential reasons:

1. The literature describing the four approaches does not

rigorously define land management type; for example,

‘heavy grazing’, ‘forest in good condition’ are general

classifications, not explicitly defined by measurable prop-

erties. For the purpose of this comparison, we have

interpreted the classifications as having a consistent phys-

ical meaning over all methods, whereas in fact it depends

on the origins of the methods. For example, the meta-

models of Method 1 were derived specifically for

Pontbren based on the distribution of soil properties

measured for each land management regime (Wheater

et al. ); whereas the classification of land
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management used for the indices-based regionalisation of

Method 2 and the CFMP tool of Method 3 is subjectively

mapped to the CN classification system (Hess et al. ;

Bulygina et al. ), while the regression-based regionali-

sation of Method 4 is based on speculative parameter

modifications (Packman et al. ).

2. Closely related to the previous issue, each method draws

on different sources of information to estimate the rain-

fall-runoff model parameters: a database imported from

overseas (Methods 2 and 3), a very general regional

model developed from only 39 catchments in the UK

(Method 4); and up-scaling local evidence (Method 1).

It is hardly surprising that the results are widely variable.

3. Eachmethod uses a different approach for identifying rain-

fall-runoff parameters from the given information. Method

1 uses a GLUE-type approach to estimate parameter sets

and propagate uncertainty through the up-scaling pro-

cedure; Method 2 takes a formal Bayesian approach

including estimation of the information uncertainty and

how it propagates to parameter set estimates and model

predictions; Method 3 uses soil physical properties (with-

out accounting for uncertainty) to parameterise its

subsurface model, and CNs to estimate surface/subsurface

flow volume, while Method 4 uses deterministically-

applied regression relationships between catchment-scale

properties and parameter values.

4. And finally, each method uses a different model structure.

The major difference in the case study is the use of a field-

scale semi-distributed model for Method 1, a gridded

model for Method 2, and a lumped model for Method 3

and 4. The lumped models use the assumption that the

distribution of runoff generation and travel times, which

in general will tend to smooth out land management sig-

nals in peak flows, will not significantly affect results.

The decision about which method, if any, to adopt

should aim to align the task at hand with the particular attri-

butes of the methods. For example, Methods 1 and 2 were

developed to be applied to spatially distributed problems,

for assessing catchment scale impacts of local scale land

management. Method 1 in particular has the ability to

look at the full range of scales if adequate supporting

small-scale information exists, whereas the evidence used

in Method 2 originates largely from small catchments and
loses relevance at micro-scales. Method 3 is a nationally

applicable tool designed to indicate likely effects on T-year

daily floods of widespread (non-local) land management

change; while Method 4 uses UK-based catchment-scale evi-

dence although is more restricted in the range of land

management scenarios that can be examined. In many

cases, an ensemble or weighted average approach may be

used to address the variability of results.

If the weighted average approach is followed a model-

ler has to assign a weight to each of the methods, which

would normally be related to the confidence in the

method for the task at hand. The confidence in the

method may be assessed through its predictive quality on

historical data, even though future predictions involve not

only new climatic patterns, but also changed catchment

conditions (due to land management change). The predic-

tive quality assessment requires choice of an objective

function, and its transformation into a relative reliability

measure for use as a weight. Since the methods in this

study did not use hydrological observations at the cali-

bration stage (with the exception of Method 1), the multi-

model weighting sometimes used in hydrology (Neuman

; Ye et al. ), which assumes that the weights are

dependent on the number of observations used to calibrate

the model and the number of model parameters, does not

suit the needs. This calls for methods to specify model prob-

abilities for ungauged catchment applications. Possible

ways to address the issue would be to: (1) assign equal

weights to the predictions and consider them as equally

plausible (an ensemble approach); or (2) disregard methods

that do not perform well on historic data, and weight the

rest according to their relative performances, and from

this derive confidence limits and a weighted average

result. Using such a scheme for the Pontbren application,

based on Table 4, Methods 1 and 2 would be assigned

high relative weights, which is to be expected because

these two methods and their associated models have been

developed around Pontbren and other upland catchments,

whereas Methods 3 and 4 were developed with more gen-

eral national application in mind. The idea of using a

weighted averaging scheme, however, does require more

testing of the methods, ideally across multiple catchments

that represent the relevant land management questions;

more testing is needed before we are in a position to
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make conclusions about the general reliability of the four

tested methods.
CONCLUSIONS

Predicting the impacts of rural land management on flood

flows has become central to integrated catchment manage-

ment in the UK and elsewhere. Various methods have

recently been developed to address this prediction chal-

lenge, based on rainfall-runoff simulation models. This

paper assesses four of these methods, with the objective of

providing guidance on choosing between the methods, and

proposing some general priorities for improving tools for

land management impacts analysis.

Four approaches to prediction developed under various

UK flood risk estimation programmes were considered,

employing different rainfall-runoff models and different

strategies to estimate model parameter values. The four

methods considered are: (1) the meta-modelling approach

(Wheater et al. ; Ballard ); (2) the indices-based

regionalisation (Bulygina et al. ); (3) the CFMP tool

(Hess et al. ); and (4) the regression-based regionalisa-

tion (Calver et al. ).

The methods were assessed using the following assess-

ment strategy: (1) review of the origins, assumptions,

strengths and weaknesses behind each method; (2) perform-

ance assessment using an upland rural catchment which

represents a sample of UK land management issues – the

Pontbren catchment in Wales, UK; (3) evaluation of the

variability of results between methods when applied to

land management scenarios.

The performance assessment of the three methods

which generate flow time-series (Methods 1, 2 and 4

above) using historical streamflow data from five gauges at

Pontbren showed that the performances (for high flows,

low flows and volume bias) were variable for all methods,

with no method consistently producing performance

which we would regard as good for all gauges and perform-

ance criteria. The first two methods, the indices-based and

meta-modelling methods, generally performed better than

the fourth, the regression-based method. This is related to

the distributed nature of the former two methods, and the

models they employ were selected specifically for this type
of upland application, whereas the latter was designed for

more general and larger-scale use in the UK.

Changes in 5-year and 10-year daily maxima due to

changes in land management were estimated, using all

four methods, to evaluate variability between methods.

The flood flows were estimated for current land manage-

ment conditions and for three future scenarios: increase in

stocking density, full afforestation with deciduous trees,

and tree strips introduced at the bottom of all grazed

fields. All four methods agreed on the direction of change:

heavy grazing increases the flows, while afforestation and

tree strips decrease the flows. At the same time, the esti-

mated magnitude of change is highly variable across

methods, and within the probabilistic methods.

The differences in the predictions made by the alterna-

tive methods lead to the questions: (1) what method is

best for a particular task; and (2) whether and how the pre-

dictions should be combined and assigned relative weights

related to their reliability. To answer the first question, care-

ful consideration is needed of the origins and design of the

methods in relation to the predictive task at hand, including

their evidence base, space and time resolution, suitability of

the model structure, the method used for parameter esti-

mation, and performance history. To answer the second

question, since model performance can only be evaluated

on historical data, the relative reliability of methods for pre-

dicting the effects of future land management change cannot

easily be resolved. Therefore, it might be recommended

either: (1) to keep the whole model prediction range (a pre-

diction ensemble); or (2) to exclude some models with low

perceived reliability (as defined by judgement of a user,

and/or performance on historic data) from the ensemble,

potentially reducing the prediction range. The scope of

this paper does not permit conclusions to be made about

the general reliability of the four tested methods; but for a

Pontbren-type problem it is proposed that meta-modelling

approach combined with indices-based regionalisation are

more applicable due to their origins, characteristics and per-

formances on relevant historic data.

Taken overall, the results here provide an important and

salutary illustration of the challenges in modelling the subtle

effects of land management change. In particular, if the

uncertainties illustrated above are to be reduced to provide

more refined guidance to land management policy, a more
www.manaraa.com
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extensive set of detailed field data is required, from multiple

catchments across the UK, together with continuing inter-

comparison and refinement of these alternative modelling

tools.
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